Bibliography
1. Austerman, S.B., Growth of Graphite Crystals from Solution, in Chemistry and Physics of Carbon, P.L. Walker, Editor. 1968, Marcel Dekker: New York.
2. Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes. 1996: Academic Press.
3. Harris, P.J.F., Carbon Nanotubes and Related Materials: New Materials for the Twenty-first Century. 1999: Cambridge University Press.
4. Ebbesen, T.W. and H. Hiura, Graphene in 3-Dimensions - Towards Graphite Origami. Advanced Materials, 1995. 7(6): p. 582-586.
5. Thrower, P.A., The Study of Defects in Graphite by Transmission Electron Microscopy, in Chemistry and Physics of Carbon, P.L.J. Walker, Editor. 1969, Marcel Dekker: New York.
6. Forbes, R.G., Understanding how the liquid-metal ion source works. Vacuum, 1997. 48(1): p. 85-97.
7. Tuinstra, F. and J.L. Koenig, Raman Spectrum of Graphite. Journal of Chemical Physics, 1970. 53(3): p. 1126-1130.
8. Reich, S. and C. Thomsen, Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society of London A, 2004. 362: p. 2271-2288.
9. Terrones, M., et al., Molecular junctions by joining single-walled carbon nanotubes. Physical Review Letters, 2002. 89(7).
10. Srivastava, D., et al., Predictions of Enhanced Chemical Reactivity at Regions of Local Conformational Strain on Carbon Nanotubes: Kinky Chemistry. Journal of Physical Chemistry, 1999. 103: p. 4330-4337.
11. Thomas, J.M., Microscopic Studies of Graphite Oxidation, in Chemistry and Physics of Carbon, P.L.J. Walker, Editor. 1965, Marcel Dekker: New York.
12. Hennig, G.R., Electron Microscopy of Reactivity Changes near Lattice Defects in Graphite, in Chemistry and Physics of Carbon, P.L.J. Walker, Editor. 1966, Marcel Dekker: New York.
13. Bruch, L.W., M.W. Cole, and E. Zaremba, Physical Adsorption: Forces and Phenomena. 1997, Oxford: Oxford Science Publications.
14. Oshima, C. and A. Nagashima, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. Journal of Physics-Condensed Matter, 1997. 9(1): p. 1-20.
15. Blase, X., et al., Theory of composite BxCyNz nanotube heterojunctions. Applied Physics Letters, 1997. 70(2): p. 197-199.
16. Han, W.Q., et al., Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Applied Physics Letters, 1998. 73(21): p. 3085-3087.
17. Bando, Y., et al., C to BN conversion in multi-walled nanotubes as revealed by energy-filtering transmission electron microscopy. Chemical Physics Letters, 2001. 346(1-2): p. 29-34.
18. Chen, L., H. Ye, and Y. Gogotsi, Synthesis of Boron Nitride Coating on Carbon Nanotubes. Journal of the American Ceramic Society, 2004. 87(1): p. 147-151.
19. Fitzer, E. and L.M. Manocha, Carbon Reinforcements and Carbon/Carbon composites. 1998, Berlin: Springer-Verlag.
20. Khang, D.Y., et al., A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006. 311(5758): p. 208-212.
21. Kelly, B.T., The Thermal Conductivity of Graphite, in Chemistry and Physics of Carbon, P.L.J. Walker, Editor. 1969, Marcel Dekker: New York.
22. Spain, I.L., The Electronic Properties of Graphite, in Chemistry and Physics of Carbon, P.L.J. Walker and P.A. Thrower, Editors. 1973, Marcel Dekker: New York.
23. Kong, J., et al., Nanotube Molecular Wires as Chemical Sensors. Science, 2000. 287: p. 622-625.
24. Adu, C.K.W., et al., Carbon nanotubes: A thermoelectric nano-nose. Chemical Physics Letters, 2001. 337: p. 31-35.
25. Deheer, W.A., A. Chatelain, and D. Ugarte, A Carbon Nanotube Field-Emission Electron Source. Science, 1995. 270(5239): p. 1179-1180.
26. Rinzler, A.G., et al., Unraveling Nanotubes - Field-Emission from an Atomic Wire. Science, 1995. 269(5230): p. 1550-1553.
27. Tans, S.J., A.R.M. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature, 1998. 393(6680): p. 49-52.
28. Martel, R., et al., Single- and multi-wall carbon nanotube field-effect transistors. Applied Physics Letters, 1998. 73(17): p. 2447-2449.
29. Chen, Z., et al., An Integrated Logic Circuit Assembled on a Single Carbon Nanotube. Science, 2006. 311(5768): p. 1735.
30. Berger, C., et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B, 2004. 108(52): p. 19912-19916.
31. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
32. Schumacher, D., Surface scattering experiments with conduction electrons. Springer Tracts in Modern Physics. Vol. 128. 1993, Berlin: Springer-Verlag.
33. Berger, C., et al., Multiwalled carbon nanotubes are ballistic conductors at room temperature. Applied Physics a-Materials Science & Processing, 2002. 74(3): p. 363-365.
34. Chen, L.W. and Y.L. Wang, Stable field-induced electron emission from a solidified liquid metal ion source. Applied Physics Letters, 1998. 72(3): p. 389-391.
35. Knapp, W., L. Bischoff, and J. Teichert, Formation of a nano-emitter for electron field emission on a liquid metal ion source tip after solidification of the alloy. Vacuum, 2002. 69(1-3): p. 345-349.
36. Charlier, J.C. and G.M. Rignanese, Electronic structure of carbon nanocones. Physical Review Letters, 2001. 86(26): p. 5970-5973.
Bibliography